SULJE VALIKKO

avaa valikko

Asymptotic Completeness, Global Existence and the Infrared Problem for the Maxwell-Dirac Equations
147,20 €
American Mathematical Society
Sivumäärä: 311 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 1997, 01.08.1997 (lisätietoa)
Kieli: Englanti
The purpose of this work is to present and give full proofs of new original research results concerning integration of and scattering for the classical Maxwell-Dirac equations. These equations govern first quantized electrodynamics and are the starting point for a rigorous formulation of quantum electrodynamics. The presentation is given within the formalism of nonlinear group and Lie algebra representations, i.e. the powerful new approach to nonlinear evolution equations covariant under a group action.The authors prove that the nonlinear Lie algebra representation given by the manifestly covariant Maxwell-Dirac equations is integrable to a global nonlinear representation of the Poincare group on a differentiable manifold of small initial conditions. This solves, in particular, the small-data Cauchy problem for the Maxwell-Dirac equations globally in time. The existence of modified wave operators and asymptotic completeness is proved. The asymptotic representations (at infinite time) turn out to be nonlinear. A cohomological interpretation of the results in the spirit of nonlinear representation theory and its connection to the infrared tail of the electron are developed.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Asymptotic Completeness, Global Existence and the Infrared Problem for the Maxwell-Dirac Equations
Näytä kaikki tuotetiedot
ISBN:
9780821806838
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste