SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

The RO(G)-graded Equivariant Ordinary Homology of G-cell Complexes with Even-dimensional Cells for G=Z/p
135,10 €
American Mathematical Society
Sivumäärä: 129 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2004, 01.04.2004 (lisätietoa)
It is well known that the homology of a CW-complex with cells only in even dimensions is free. The equivariant analog of this result for $G$-cell complexes is, however, not obvious, since $RO(G)$-graded homology cannot be computed using cellular chains. We consider $G = mathbb{Z}/p$ and study $G$-cell complexes constructed using the unit disks of finite dimensional $G$-representations as cells. Our main result is that, if $X$ is a $G$-complex containing only even-dimensional representation cells and satisfying certain finiteness assumptions, then its $RO(G)$-graded equivariant ordinary homology $H_ast^G(X;A>$ is free as a graded module over the homology $H_ast$ of a point.This extends a result due to the second author about equivariant complex projective spaces with linear $mathbb{Z}/p$-actions. Our new result applies more generally to equivariant complex Grassmannians with linear $mathbb{Z}/p$-actions. Two aspects of our result are particularly striking. The first is that, even though the generators of $H^G_ast(X;A)$ are in one-to-one correspondence with the cells of $X$, the dimension of each generator is not necessarily the same as the dimension of the corresponding cell. This shifting of dimensions seems to be a previously unobserved phenomenon. However, it arises so naturally and ubiquitously in our context that it seems likely that it will reappear elsewhere in equivariant homotopy theory. The second unexpected aspect of our result is that it is not a purely formal consequence of a trivial algebraic lemma.Instead, we must look at the homology of $X$ with several different choices of coefficients and apply the Universal Coefficient Theorem for $RO(G)$-graded equivariant ordinary homology. In order to employ the Universal Coefficient Theorem, we must introduce the box product of $RO(G)$-graded Mackey functors. We must also compute the $RO(G)$-graded equivariant ordinary homology of a point with an arbitrary Mackey functor as coefficients. This, and some other basic background material on $RO(G)$-graded equivariant ordinary homology, is presented in a separate part at the end of the memoir.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
The RO(G)-graded Equivariant Ordinary Homology of G-cell Complexes with Even-dimensional Cells for G=Z/p
Näytä kaikki tuotetiedot
ISBN:
9780821834619
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste