This book presents the first steps of a theory of confoliations designed to link geometry and topology of three-dimensional contact structures with the geometry and topology of codimension-one foliations on three-dimensional manifolds. Developing almost independently, these theories at first glance belonged to two different worlds: The theory of foliations is part of topology and dynamical systems, while contact geometry is the odd-dimensional 'brother' of symplectic geometry. However, both theories have developed a number of striking similarities. Confoliations - which interpolate between contact structures and codimension-one foliations - should help us to understand better links between the two theories. These links provide tools for transporting results from one field to the other.It's features include: a unified approach to the topology of codimension-one foliations and contact geometry; insight on the geometric nature of integrability; and, new results, in particular on the perturbation of confoliations into contact structures.