The problem of understanding how humans perceive the quality of a reproduced image is of interest to researchers of many fields related to vision science and engineering: optics and material physics, image processing (compression and transfer), printing and media technology, and psychology. A measure for visual quality cannot be defined without ambiguity because it is ultimately the subjective opinion of an “end-user” observing the product. The purpose of this thesis is to devise computational methods to estimate the overall visual quality of prints, i.e. a numerical value that combines all the relevant attributes of the perceived image quality. The problem is limited to consider the perceived quality of printed photographs from the viewpoint of a consumer, and moreover, the study focuses only on digital printing methods, such as inkjet and electrophotography. The main contributions of this thesis are two novel methods to estimate the overall visual quality of prints. In the first method, the quality is computed as a visible difference between the reproduced image and the original digital (reference) image, which is assumed to have an ideal quality. The second method utilises instrumental print quality measures, such as colour densities, measured from printed technical test fields, and connects the instrumental measures to the overall quality via subjective attributes, i.e. attributes that directly contribute to the perceived quality, using a Bayesian network. Both approaches were evaluated and verified with real data, and shown to predict well the subjective evaluation results.