Zeta Potential has been known for more than one hundred years as a characteristic of the Interfacial Electric Double layer that control many properties and processes in dispersions, emulsions, and wet porous materials. It appears in many fundamental studies of such systems. It is a parameter used more and more in nanotechnology, biomedical and many other fields. However, due to the lack of corresponding education in colleges and graduate schools, many users, even some senior researchers, do not fully understand the concept and many mistakes appear in publications and applications. Recently, application of the zeta potential has expanded more into formulation and even quality control of these heterogeneous systems. The main goal of this book is to reflect this switch. In contrast to previously published books on this subject, it places emphasis on modern measurement methods that allow expansion in zeta potential usage and applications. Major focus is given to the three critical electrokinetic phenomena that serve as a basis for modern methods of zeta potential measurements: electrophoresis, electroacoustics and streaming current. The section on these methods will help the reader to navigate between different methods and select the one that is most appropriate for their application. The section on applications includes reviews of hundreds published papers so the reader can find previously published data on similar projects.
Zeta Potential: Fundamentals, Methods, and Applications addresses the need for an up-to-date book focusing on the principles and practice of zeta potential measurements, providing readers with comprehensive and readily understandable coverage. It is suitable for an interdisciplinary audience of researchers, engineers and students who are involved in studying or using in industry complex heterogeneous liquids, like dispersions and emulsions, as well as wetted porous materials. This includes but is not limited to materials/colloids and interface chemists, chemical engineers, material scientists, biophysicists, and biochemists.
- Explains the fundamentals of the zeta potential concept and provides formulae based on well verified and widely accepted theoretical models for interfacial double layer and electrokinetic phenomena
- Introduces common technologies for characterizing zeta potential, including the most widely used contemporary measuring methods and interpretation procedures for converting raw measured data into zeta potential
- Provides useful examples of applications for a wide variety of R&D and industrial fields