This issue contains 16 papers, presenting work on tsunami hazards, earthquakes, and related computational infrastructure. The integration of multihazard simulations and remotely sensed observations is providing enormous benefits to earthquake and tsunami research. Earthquakes cause damage, but also generate tsunamis, which create additional damage. Remotely sensed observations coupled with geologic field measurements and simulations contribute to our understanding of earthquake processes, which is necessary for mitigating loss of life and property from these damaging events. This book focuses on assimilation of remotely sensed observations to advance multihazards simulation. This capability provides a powerful virtual laboratory to probe earthquake behavior and the earthquake cycle. Hence, it offers a new opportunity to gain understanding of the earthquake nucleation process, precursory phenomena, and space-time seismicity patterns needed for breakthrough advances in earthquake forecasting and hazard quantification.