SULJE VALIKKO

avaa valikko

The Group Fixed by a Family of Injective Endomorphisms of a Free Group
35,80 €
American Mathematical Society
Sivumäärä: 81 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 1996, 01.01.1996 (lisätietoa)
This monograph contains a proof of the Bestvina-Handel Theorem (for any automorphism of a free group of rank $n$, the fixed group has rank at most $n$) that to date has not been available in book form. The account is self-contained, simplified, purely algebraic, and extends the results to an arbitrary family of injective endomorphisms. Let $F$ be a finitely generated free group, let $phi$ be an injective endomorphism of $F$, and let $S$ be a family of injective endomorphisms of $F$.By using the Bestvina-Handel argument with graph pullback techniques of J. R. Stallings, the authors show that, for any subgroup $H$ of $F$, the rank of the intersection $Hcap mathrm {Fix}(phi)$ is at most the rank of $H$. They deduce that the rank of the free subgroup which consists of the elements of $F$ fixed by every element of $S$ is at most the rank of $F$. The topological proof by Bestvina-Handel is translated into the language of groupoids, and many details previously left to the reader are meticulously verified in this text.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
The Group Fixed by a Family of Injective Endomorphisms of a Free Group
Näytä kaikki tuotetiedot
ISBN:
9780821805640
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste