Analysis Of And On Uniformly Rectifiable Sets
The notion of uniform rectifiability of sets (in a Euclidean space), which emerged only recently, can be viewed in several different ways. It can be viewed as a quantitative and scale-invariant substitute for the classical notion of rectifiability; as the answer (sometimes only conjecturally) to certain geometric questions in complex and harmonic analysis; as a condition which ensures the parametrizability of a given set, with estimates, but with some holes and self-intersections allowed; and as an achievable baseline for information about the structure of a set. This book is about understanding uniform rectifiability of a given set in terms of the approximate behaviour of the set at most locations and scales. In addition to being a general reference on uniform rectifiability, the book also poses many open problems, some of which are quite basic.
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa |
Tilaa jouluksi viimeistään 27.11.2024