Learn exploratory data analysis concepts using powerful R packages to enhance your R data analysis skills
Key Features
Speed up your data analysis projects using powerful R packages and techniques
Create multiple hands-on data analysis projects using real-world data
Discover and practice graphical exploratory analysis techniques across domains
Book DescriptionHands-On Exploratory Data Analysis with R will help you build not just a foundation but also expertise in the elementary ways to analyze data. You will learn how to understand your data and summarize its main characteristics. You'll also uncover the structure of your data, and you'll learn graphical and numerical techniques using the R language.
This book covers the entire exploratory data analysis (EDA) process—data collection, generating statistics, distribution, and invalidating the hypothesis. As you progress through the book, you will learn how to set up a data analysis environment with tools such as ggplot2, knitr, and R Markdown, using tools such as DOE Scatter Plot and SML2010 for multifactor, optimization, and regression data problems.
By the end of this book, you will be able to successfully carry out a preliminary investigation on any dataset, identify hidden insights, and present your results in a business context.
What you will learn
Learn powerful R techniques to speed up your data analysis projects
Import, clean, and explore data using powerful R packages
Practice graphical exploratory analysis techniques
Create informative data analysis reports using ggplot2
Identify and clean missing and erroneous data
Explore data analysis techniques to analyze multi-factor datasets
Who this book is forHands-On Exploratory Data Analysis with R is for data enthusiasts who want to build a strong foundation for data analysis. If you are a data analyst, data engineer, software engineer, or product manager, this book will sharpen your skills in the complete workflow of exploratory data analysis.