Some of the modem developments described in Motion, Control, and Geometry include the geometric control of robot motion and craft orientation, how high-power precision micromotors are engineered for less invasive surgery and self-focusing lens applications, what a mobile robot on a surface has in common with one moving in three dimensions, and how the motion-control problem is simplified by a coupled oscillator's geometric grouping of degrees of freedom and motion time scales.
The four papers in these proceedings provide a view through the scientific portal of today's motion-control geometric research into tomorrow's technology. The mathematics needed to carry out this research is that of modem differential geometry, and the questions raised in the field of motion-control geometry go directly to the research frontier. Geometry is a mathematical area too often neglected nowadays in a student's education. This publication will help adjust the control initially imposed about 2,300 years ago on one kind of "motion"—that of students entering Plato's Academy, where the following caveat was inscribed above the doorway: "Let no one ignorant of geometry enter here." Readers of these chapters will gain an appreciation of modem geometry and how it continues to play a crucial role in the context of motion control in cutting-edge science and technology.
Table of Contents
FRONT MATTER
INTRODUCTION
1: GEOMETRIC FOUNDATIONS OF MOTION AND CONTROL
2: CYCLES THAT EFFECT CHANGE
3: GEOMETRIC PHASES, CONTROL THEORY, AND ROBOTICS
4: MOTION CONTROL AND COUPLED OSCILLATORS
APPENDIX A
APPENDIX B