SULJE VALIKKO

avaa valikko

A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures
116,10 €
American Mathematical Society
Sivumäärä: 63 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2000, 30.08.2000 (lisätietoa)
Kieli: Englanti
Let $V = {mathbb R}^{p,q}$ be the pseudo-Euclidean vector space of signature $(p,q)$, $pge 3$ and $W$ a module over the even Clifford algebra $C!ell^0 (V)$. A homogeneous quaternionic manifold $(M,Q)$ is constructed for any $mathfrak {spin} (V)$-equivariant linear map $Pi: wedge^2 Wrightarrow V$. If the skew symmetric vector valued bilinear form $Pi$ is nondegenerate then $(M,Q)$ is endowed with a canonical pseudo-Riemannian metric $g$ such that $(M,Q,g)$ is a homogeneous quatemionic pseudo-Kahler manifold. If the metric $g$ is positive definite, i.e. a Riemannian metric, then the quaternionic Kahler manifold $(M,Q,g)$ is shown to admit a simply transitive solvable group of automorphisms.In this special case ($p=3$) we recover all the known homogeneous quaternionic Kahler manifolds of negative scalar curvature (Alekseevsky spaces) in a unified and direct way. If $p>3$ then $M$ does not admit any transitive action of a solvable Lie group and we obtain new families of quatermionic pseudo-Kahler manifolds. Then it is shown that for $q = 0$ the noncompact quaternionic manifold $(M,Q)$ can be endowed with a Riemannian metric $h$ such that $(M,Q,h)$ is a homogeneous quaternionic Hermitian manifold, which does not admit any transitive solvable group of isometries if $p>3$. The twistor bundle $Zrightarrow M$ and the canonical ${mathrm SO} (3)$-principal bundle $S rightarrow M$ associated to the quaternionic manifold $(M,Q)$ are shown to be homogeneous under the automorphism group of the base.More specifically, the twistor space is a homogeneous complex manifold carrying an invariant holomorphic distribution $mathcal D$ of complex codimension one, which is a complex contact structure if and only if $Pi$ is nondegenerate. Moreover, an equivariant open holomorphic immersion $Zrightarrowbar{Z}$ into a homogeneous complex manifold $bar{Z}$ of complex algebraic group is constructed. Finally, the construction is shown to have a natural mirror in the category of supermanifolds. In fact, for any $mathfrak {spin} (V)$-equivariant linear map $Pi: vee^2 W rightarrow V$ a homogeneous quaternionic supermanifold $(M,Q)$ is constructed and, moreover, a homogeneous quaternionic pseudo-Kahler supermanifold $(M,Q,g)$ if the symmetric vector valued bilinear form $Pi$ is nondegenerate.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures
Näytä kaikki tuotetiedot
ISBN:
9780821821114
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste