SULJE VALIKKO

avaa valikko

Inverse Linear Problems on Hilbert Space and their Krylov Solvability
111,40 €
Springer
Sivumäärä: 140 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2022, 11.02.2022 (lisätietoa)
Kieli: Englanti
Tuotesarja: Springer Monographs in Mathematics

This book presents a thorough discussion of the theory of abstract inverse linear problems on Hilbert space. Given an unknown vector f in a Hilbert space H, a linear operator A acting on H, and a vector g in H satisfying Af=g, one is interested in approximating f by finite linear combinations of g, Ag, A2g, A3g, … The closed subspace generated by the latter vectors is called the Krylov subspace of H generated by g and A. The possibility of solving this inverse problem by means of projection methods on the Krylov subspace is the main focus of this text.

After giving a broad introduction to the subject, examples and counterexamples of Krylov-solvable and non-solvable inverse problems are provided, together with results on uniqueness of solutions, classes of operators inducing Krylov-solvable inverse problems, and the behaviour of Krylov subspaces under small perturbations. An appendix collects material on weaker convergence phenomena in general projection methods.

This subject of this book lies at the boundary of functional analysis/operator theory and numerical analysis/approximation theory and will be of interest to graduate students and researchers in any of these fields.




Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Inverse Linear Problems on Hilbert Space and their Krylov Solvabilityzoom
Näytä kaikki tuotetiedot
ISBN:
9783030881580
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste