SULJE VALIKKO

avaa valikko

The Beilinson Complex and Canonical Rings of Irregular Surfaces
70,20 €
American Mathematical Society
Sivumäärä: 99 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2006, 30.08.2006 (lisätietoa)
Kieli: Englanti
An important theorem by Beilinson describes the bounded derived category of coherent sheaves on $mathbb{P}^n$, yielding in particular a resolution of every coherent sheaf on $mathbb{P}^n$ in terms of the vector bundles $Omega_{mathbb{P}^n}^j(j)$ for $0le jle n$. This theorem is here extended to weighted projective spaces. To this purpose we consider, instead of the usual category of coherent sheaves on $mathbb{P}({rm w})$ (the weighted projective space of weights $rm w=({rm w}_0,dots,{rm w}_n)$), a suitable category of graded coherent sheaves (the two categories are equivalent if and only if ${rm w}_0=cdots={rm w}_n=1$, i.e. $mathbb{P}({rm w})= mathbb{P}^n$), obtained by endowing $mathbb{P}({rm w})$ with a natural graded structure sheaf. The resulting graded ringed space $overline{mathbb{P}}({rm w})$ is an example of graded scheme (in chapter 1 graded schemes are defined and studied in some greater generality than is needed in the rest of the work).Then in chapter 2 we prove for graded coherent sheaves on $overline{mathbb{P}}({rm w})$ a result which is very similar to Beilinson's theorem on $mathbb{P}^n$, with the main difference that the resolution involves, besides $Omega_{overline{mathbb{P}}({rm w})}^j(j)$ for $0le jle n$, also $mathcal{O}_{overline{mathbb{P}}({rm w})}(1)$ for $n-sum_{i=0}^n{rm w}_i1$. This weighted version of Beilinson's theorem is then applied in chapter 3 to prove a structure theorem for good birational weighted canonical projections of surfaces of general type (i.e., for morphisms, which are birational onto the image, from a minimal surface of general type $S$ into a $3$-dimensional $mathbb{P}({rm w})$, induced by $4$ sections $sigma_iin H(S, mathcal{O}_S({rm w}_iK_S))$).This is a generalization of a theorem by Catanese and Schreyer (who treated the case of projections into $mathbb{P}^3$), and is mainly interesting for irregular surfaces, since in the regular case a similar but simpler result (due to Catanese) was already known. The theorem essentially states that giving a good birational weighted canonical projection is equivalent to giving a symmetric morphism of (graded) vector bundles on $overline{mathbb{P}}({rm w})$, satisfying some suitable conditions. Such a morphism is then explicitly determined in chapter 4 for a family of surfaces with numerical invariants $p_g=q=2$, $K^2=4$, projected into $mathbb{P}(1,1,2,3)$.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
The Beilinson Complex and Canonical Rings of Irregular Surfaces
Näytä kaikki tuotetiedot
ISBN:
9780821841938
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste