Computer simulations of materials are rapidly moving from the level of fundamental studies into the domain of industrial research and development tools. Papers in this book provide an extensive review of advances in materials theory and modeling by addressing new frontiers for theoretical and computational research on real materials, identifying crucial areas where experimental studies have or can be complemented by theory and simulation, and establishing a blueprint for further development of multiscale methods in computational materials science. A number of algorithms for boosting the simulation of time scale of atomistic systems have been introduced but they do not quite answer the need for a solid and widely applicable method. Topics include: mechanical properties, fracture and plasticity; radiation-matter interactions; polymers and macromolecules; multiresolution and multiscale methods - microstructural evolution; new methods for materials simulation; multi-time-scale methods and applications and large-scale ab initio calculations.