Die mathematischen Formeln . . . Sie spielen nur mit sich selbst, driicken nichts als ihre wunderbare Natur aus, und eben darum sind sie so ausdrucksvoll - eben daruf!1, spiegelt sich in ihnen das seltsame Verhli. ltnisspielder Dinge. Die Grundbegriffe der Linearen Algebra, wie man sie zur Vorbereitung einer Vor- lesung tiber Algebra braucht, lassen sich auf einem Dutzend Seiten vollstandig darstellen. SoIche Kiirze wird vielleicht gerade Algebraikern yom Fach besonders einleuchten. Aber auf der anderen Seite stehen Bedtirfnisse und Interessen aus der Analysis, Geometrie und Physik, die weit tiber das hinausgehen, was man in einem zweisemestrigen Kurs bewaltigen kann. Die Theorie der Liealgebren, das Studium der orthogonalen Gruppen, die Grundlagen der speziellen Relativitats- theorie, die Ubertragung der Analysis auf Mannigfaltigkeiten und die Grundlagen der Projektiven Geometrie, - all das ist eigentlich nur Lineare Algebra. Nun ist das Buch, das ich hier vorlege, auch nicht enzyklopadisch, aber ich mochte doch Wege zeigen, die aus dem einfachen Rechenschematismus, mit dem die Lineare Algebra beginnt, in reiche, vielfiiltige, sinnvolle und anschauliche Ge- biete fiihren. Meine Darste11ung beginnt mit sehr geringer Abstraktion. Das nullte Kapitel verlangt nur, was man auf der Schule machen kann, aber es stellt schon die Studenten der Physik (und die Kollegen) flir einige Zeit zufrieden. Auch da- nach geht es mit der Abstraktion behutsam voran, und ich scheue mich nicht, vieles mehrfach zu behandeln, rechnerisch, algebraisch und geometrisch. Ich glaube nicht, dass man auf diese Weise Zeit verliert.