SULJE VALIKKO

avaa valikko

The Quadratic Isoperimetric Inequality for Mapping Tori of Free Group Automorphisms
87,00 €
American Mathematical Society
Sivumäärä: 152 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2010, 28.02.2010 (lisätietoa)
Kieli: Englanti
The authors prove that if $F$ is a finitely generated free group and $phi$ is an automorphism of $F$ then $Frtimes_phimathbb Z$ satisfies a quadratic isoperimetric inequality. The authors' proof of this theorem rests on a direct study of the geometry of van Kampen diagrams over the natural presentations of free-by-cylic groups. The main focus of this study is on the dynamics of the time flow of $t$-corridors, where $t$ is the generator of the $mathbb Z$ factor in $Frtimes_phimathbb Z$ and a $t$-corridor is a chain of 2-cells extending across a van Kampen diagram with adjacent 2-cells abutting along an edge labelled $t$. The authors prove that the length of $t$-corridors in any least-area diagram is bounded by a constant times the perimeter of the diagram, where the constant depends only on $phi$. The authors' proof that such a constant exists involves a detailed analysis of the ways in which the length of a word $win F$ can grow and shrink as one replaces $w$ by a sequence of words $w_m$, where $w_m$ is obtained from $phi(w_{m-1})$ by various cancellation processes. In order to make this analysis feasible, the authors develop a refinement of the improved relative train track technology due to Bestvina, Feighn and Handel. Table of Contents: Positive automorphisms; Train tracks and the beaded decomposition; The General Case; Bibliography; Index. (MEMO/203/955)

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
The Quadratic Isoperimetric Inequality for Mapping Tori of Free Group Automorphisms
Näytä kaikki tuotetiedot
ISBN:
9780821846315
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste