The amount of data shared and stored on the web and other document repositories is steadily on the rise. Unfortunately, this growth increases inefficiencies and difficulties when trying to find the most relevant and up-to-date information due to unstructured data.
Advanced Metaheuristic Methods in Big Data Retrieval and Analytics examines metaheuristic techniques as an important alternative model for solving complex problems that are not treatable by deterministic methods. Recent studies suggest that IR and biomimicry can be used together for several application problems in big data and internet of things, especially when conventional methods would be too expensive or difficult to implement. Featuring coverage on a broad range of topics such as ontology, plagiarism detection, and machine learning, this book is ideally designed for engineers, graduate students, IT professionals, and academicians seeking an overview of new trends in information retrieval in big data.