In today's security-conscious society, real-world applications for authentication or identification require a highly accurate system for recognizing individual humans. The required level of performance cannot be achieved through the use of a single biometric such as face, fingerprint, ear, iris, palm, gait or speech. Fusing multiple biometrics enables the indexing of large databases, more robust performance and enhanced coverage of populations. Multiple biometrics are also naturally more robust against attacks than single biometrics. This book addresses a broad spectrum of research issues on multibiometrics for human identification, ranging from sensing modes and modalities to fusion of biometric samples and combination of algorithms. It covers publicly available multibiometrics databases, theoretical and empirical studies on sensor fusion techniques in the context of biometrics authentication, identification and performance evaluation and prediction.