SULJE VALIKKO

avaa valikko

Cohomology for Quantum Groups via the Geometry of the Nullcone
80,00 €
American Mathematical Society
Sivumäärä: 93 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2014, 30.04.2014 (lisätietoa)
Kieli: Englanti
Let ζ be a complex ℓ th root of unity for an odd integer ℓ>1 . For any complex simple Lie algebra g , let u ζ =u ζ (g) be the associated "small" quantum enveloping algebra. This algebra is a finite dimensional Hopf algebra which can be realised as a subalgebra of the Lusztig (divided power) quantum enveloping algebra U ζ and as a quotient algebra of the De Concini-Kac quantum enveloping algebra U ζ . It plays an important role in the representation theories of both U ζ and U ζ in a way analogous to that played by the restricted enveloping algebra u of a reductive group G in positive characteristic p with respect to its distribution and enveloping algebras. In general, little is known about the representation theory of quantum groups (resp., algebraic groups) when l (resp., p ) is smaller than the Coxeter number h of the underlying root system. For example, Lusztig's conjecture concerning the characters of the rational irreducible G -modules stipulates that p≥h . The main result in this paper provides a surprisingly uniform answer for the cohomology algebra H ∙ (u ζ ,C) of the small quantum group.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Cohomology for Quantum Groups via the Geometry of the Nullcone
Näytä kaikki tuotetiedot
ISBN:
9780821891759
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste