Since the elassie work on inequalities by HARDY, LITTLEWOOD, and P6LYA in 1934, an enonnous amount of effort has been devoted to the sharpening and extension of the elassieal inequalities, to the discovery of new types of inequalities, and to the application of inqualities in many parts of analysis. As examples, let us eite the fields of ordinary and partial differential equations, whieh are dominated by inequalities and variational prineiples involving functions and their derivatives; the many applications of linear inequalities to game theory and mathe- matieal economics, which have triggered a renewed interest in con- vexity and moment-space theory; and the growing uses of digital com- puters, which have given impetus to a systematie study of error esti- mates involving much sophisticated matrix theory and operator theory. The results presented in the following pages reflect to some extent these ramifications of inequalities into contiguous regions of analysis, but to a greater extent our concem is with inequalities in their native habitat.
Since it is elearly impossible to give a connected account of the burst of analytic activity of the last twenty-five years centering about inequalities, we have d. eeided to limit our attention to those topies that have particularly delighted and intrigued us, and to the study of whieh we have contributed.