SULJE VALIKKO

avaa valikko

On the Connection Between Weighted Norm Inequalities, Commutators and Real Interpolation
124,40 €
American Mathematical Society
Sivumäärä: 80 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2001, 01.01.2001 (lisätietoa)
We show that the class of weights $w$ for which the Calderon operator is bounded on $L^p(w)$ can be used to develop a theory of real interpolation which is more general and exhibits new features when compared to the usual variants of the Lions-Peetre methods. In particular we obtain extrapolation theorems (in the sense of Rubio de Francia's theory) and reiteration theorems for these methods. We also consider interpolation methods associated with the classes of weights for which the Calderon operator is bounded on weighted Lorentz spaces and obtain similar results. We extend the commutator theorems associated with the real method of interpolation in several directions. We obtain weighted norm inequalities for higher order commutators as well as commutators of fractional order.One application of our results gives new weighted norm inequalities for higher order commutators of singular integrals with multiplications by BMO functions. We also introduce analogs of the space BMO in order to consider the relationship between commutators for Calderon type operators and their corresponding classes of weights.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
On the Connection Between Weighted Norm Inequalities, Commutators and Real Interpolation
Näytä kaikki tuotetiedot
ISBN:
9780821827345
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste