SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Quasi-ordinary Power Series and Their Zeta Functions
112,70 €
American Mathematical Society
Sivumäärä: 85 sivua
Asu: Pehmeäkantinen kirja
Painos: illustrated Edition
Julkaisuvuosi: 2005, 01.11.2005 (lisätietoa)
The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities.This allows us to effectively represent $Z_{text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $Rpsi_h$ of nearby cycles on $h^{-1}(0)$. In particular, we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Quasi-ordinary Power Series and Their Zeta Functions
Näytä kaikki tuotetiedot
ISBN:
9780821838761
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste