FUNCTIONALIZED CARBON NANOTUBES FOR BIOMEDICAL APPLICATIONS The book highlights established research and technology on current and emerging trends and biomedical applications of functionalized carbon nanotubes by providing academic researchers and scientists in industry, as well as high-tech start-ups, with knowledge of the modern practices that will revolutionize using functionalized carbon nanotubes.
Nanotechnology suggests fascinating opportunities for a variety of applications in biomedical fields, including bioimaging and targeted delivery of biomacromolecules into cells. Numerous strategies have been recommended to functionalize carbon nanotubes with raised solubility for efficient use in biomedical applications. Functionalized carbon nanotubes have unique arrangements and extravagant mechanical, thermal, magnetic, optical, electrical, surface, and chemical properties, and the combination of these features gives them widespread biomedical applications. Functionalized carbon nanotubes are relatively flexible and interact with the cell membranes and penetrate different biological tissues owing to a “snaking” effect, therefore both the pharmacological and toxicological profiles of functionalized carbon nanotubes have gathered much attention in recent times.
This book covers a broad range of topics relating to carbon nanotubes, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive physical, chemical, optical, and even magnetic properties for various applications, considerable effort has been made to employ functionalized carbon nanotubes as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment.
Audience
The book is intended for a very broad audience of researchers and scientists working in the fields of nanomaterials, nanomedicine, bioinspired nanomaterials, nanotechnology, and biomedical application of nanomaterials.