The human brain, wi th its hundred billion or more neurons, is both one of the most complex systems known to man and one of the most important. The last decade has seen an explosion of experimental research on the brain, but little theory of neural networks beyond the study of electrical properties of membranes and small neural circuits. Nonetheless, a number of workers in Japan, the United States and elsewhere have begun to contribute to a theory which provides techniques of mathematical analysis and computer simulation to explore properties of neural systems containing immense numbers of neurons. Recently, it has been gradually recognized that rather independent studies of the dynamics of pattern recognition, pattern format::ion, motor control, self-organization, etc. , in neural systems do in fact make use of common methods. We find that a "competition and cooperation" type of interaction plays a fundamental role in parallel information processing in the brain. The present volume brings together 23 papers presented at a U. S. -Japan Joint Seminar on "Competition and Cooperation in Neural Nets" which was designed to catalyze better integration of theory and experiment in these areas. It was held in Kyoto, Japan, February 15-19, 1982, under the joint sponsorship of the U. S. National Science Foundation and the Japan Society for the Promotion of Science. Participants included brain theorists, neurophysiologists, mathematicians, computer scientists, and physicists. There are seven papers from the U. S.