Offers a physical organic chemistry and mechanistic perspective of the chemistry of thermal processes in the gas phase
The book looks at all aspects of the chemical processing technique called gas-phase pyrolysis, including its methodology and reactors, synthesis, reaction mechanisms, structure, kinetics, and applications. It discusses combinations of pyrolytic reactors with physiochemical techniques, routes for and reactions for the synthesis of organic compounds, and the control of reaction rates.
Gas-Phase Pyrolytic Reactions: Synthesis, Mechanisms, and Kinetics starts with in-depth chapter coverage of static pyrolysis, dynamic flow pyrolysis, and analytical pyrolysis. It then examines synthesis and applications, including flash vacuum pyrolysis in organic synthesis, elimination of HX, elimination of CO and CO2, pyrolysis of Meldrum’s acid derivatives, and elimination of N2. A chapter on reaction mechanism comes next and includes coverage of retero-ene reaction and reactive intermediates. Following that are sections covering: structure/reactivity correlation, functional group & structural frame interconversions; gas-phase pyrolysis of hydrazones and phosphorus Ylides; and more.
Deals with a growing area of chemistry and engineering interest that fits under the practices of green and sustainable chemistry
Addresses several important aspects: methodology and reactors, synthesis, reaction mechanisms, structure, kinetics, and applications
Reviews general methods of pyrolysis techniques
Sets out the fundamentals and advantages of gas-phase pyrolysis in a way that illustrates its wide potential applications
Gas-Phase Pyrolytic Reactions: Synthesis, Mechanisms, and Kinetics will appeal to organic chemists, physical organic chemists, chemical engineers and anyone interested in green/sustainable chemistry, chemical synthesis, or process chemistry.