Over the past few years, concrete technology has advanced quite dramatically thanks to the use of a great variety of additives and admixtures, which have paved the way for the effective development of new-generation concrete mixtures. Among these additives and admixtures, nanomaterials used in construction materials such as paste, mortar, and concrete mixtures have become very popular recently. Much of the previous attention in regard to the utilization of nanomaterials in construction materials was specifically devoted to the characterization of their fresh-state, hydration, microstructure, pore structure, mechanical, transport, and durability properties. However, research into the tailoring of multi-functional properties of construction materials (especially cementitious) with the use of nanomaterials is still in its infancy.
Recent Advances in Nano-Tailored Multi-Functional Cementitious Composites aims to capture recent major scientific advances and the current state of the art in multi-functional cementitious composites developed with nanomaterials. The book will provide researchers, engineers, and other stakeholders with an insight into future directions of multi-functional capabilities of cementitious composites. Chapters focus on the large-scale development, characterization, and application of multi-functional cementitious composites addressing the following topics: nano-modified concrete; strain-hardening cementitious composites; self-sensing concrete; self-healing and bacteria-based concrete; self-cleaning concrete; self-consolidating concrete; material/construction technology for 3D printing; thermal insulation capability; green concretes including geopolymer concrete; nanoscale characterization methods; low CO2 reactive magnesia cements; and future developments and challenges of nano-tailored cementitious composites.
The book will be an essential reference resource for academic and industrial researchers, materials scientists, and civil engineers working on the development and application of nano-tailored multi-functional cementitious composites.