SULJE VALIKKO

avaa valikko

Zhixin Wang | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Dirty Data Processing for Machine Learning
Zhixin Qi; Hongzhi Wang; Zejiao Dong
Springer (2023)
Kovakantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Global Oil and Gas Resources: Potential and Distribution
Lirong Dou; Zhixin Wen; Zhaoming Wang
Springer Verlag, Singapore (2024)
Kovakantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Digital Terrestrial Television Broadcasting - Technology and System
Jian Song; Zhixing Yang; Jun Wang
John Wiley & Sons Inc (2015)
Kovakantinen kirja
133,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Transportation Infrastructure Engineering, Materials, Behavior and Performance - Proceedings of the 6th GeoChina International C
Wynand JvdM Steyn; Zhixin Wang; Glynn Holleran
Springer Nature Switzerland AG (2021)
Pehmeäkantinen kirja
190,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Advances in Energy and Environmental Engineering
Hossam Gaber (ed.); Zhixin Wang (ed.); Huaping Sun (ed.); Yang Han (ed.)
Springer (2024)
Kovakantinen kirja
215,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Dirty Data Processing for Machine Learning
129,90 €
Springer
Sivumäärä: 133 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2023, 30.11.2023 (lisätietoa)
Kieli: Englanti

In both the database and machine learning communities, data quality has become a serious issue which cannot be ignored. In this context, we refer to data with quality problems as “dirty data.” Clearly, for a given data mining or machine learning task, dirty data in both training and test datasets can affect the accuracy of results. Accordingly, this book analyzes the impacts of dirty data and explores effective methods for dirty data processing.



Although existing data cleaning methods improve data quality dramatically, the cleaning costs are still high. If we knew how dirty data affected the accuracy of machine learning models, we could clean data selectively according to the accuracy requirements instead of cleaning all dirty data, which entails substantial costs. However, no book to date has studied the impacts of dirty data on machine learning models in terms of data quality. Filling precisely this gap, the book is intended for a broad audience ranging from researchers inthe database and machine learning communities to industry practitioners.



Readers will find valuable takeaway suggestions on: model selection and data cleaning; incomplete data classification with view-based decision trees; density-based clustering for incomplete data; the feature selection method, which reduces the time costs and guarantees the accuracy of machine learning models; and cost-sensitive decision tree induction approaches under different scenarios. Further, the book opens many promising avenues for the further study of dirty data processing, such as data cleaning on demand, constructing a model to predict dirty-data impacts, and integrating data quality issues into other machine learning models. Readers will be introduced to state-of-the-art dirty data processing techniques, and the latest research advances, while also finding new inspirations in this field.




Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Dirty Data Processing for Machine Learningzoom
Näytä kaikki tuotetiedot
ISBN:
9789819976560
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste