SULJE VALIKKO

avaa valikko

Ye Jong Chul Ye | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 7 tuotetta
Haluatko tarkentaa hakukriteerejä?



Geometry of Deep Learning : A Signal Processing Perspective
Jong Chul Ye
Springer (2022)
Kovakantinen kirja
71,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Geometry of Deep Learning : A Signal Processing Perspective
Jong Chul Ye
Springer (2023)
Pehmeäkantinen kirja
56,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Learning for Biomedical Image Reconstruction
Jong Chul Ye; Yonina C. Eldar; Michael Unser
Cambridge University Press (2023)
Kovakantinen kirja
112,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Geometry of Deep Learning
Ye Jong Chul Ye
Springer Nature B.V. (2022)
Pehmeäkantinen kirja
117,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning for Medical Image Reconstruction - Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2
Florian Knoll; Andreas Maier; Daniel Rueckert; Jong Chul Ye
Springer Nature Switzerland AG (2019)
Pehmeäkantinen kirja
51,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Sparsity and Low-Rank Models for Compressed Sensing in Biomedical Imaging
Yoram Bresler; Jong Chul Ye
Wiley-Blackwell (2014)
Kovakantinen kirja
101,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning for Medical Image Reconstruction : Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI 20
Farah Deeba (ed.); Patricia Johnson (ed.); Tobias Würfl (ed.); Jong Chul Ye (ed.)
Springer (2020)
Pehmeäkantinen kirja
51,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Geometry of Deep Learning : A Signal Processing Perspective
71,40 €
Springer
Sivumäärä: 330 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2022, 06.01.2022 (lisätietoa)
Kieli: Englanti
Tuotesarja: Mathematics in Industry 37

The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. 

To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems.

Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.




Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Geometry of Deep Learning : A Signal Processing Perspectivezoom
Näytä kaikki tuotetiedot
ISBN:
9789811660450
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste