Laurence T. Yang; Xingshe Zhou; Wei Zhao; Zhaohui Wu; Yian Zhu; Man Lin Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2005) Pehmeäkantinen kirja
All papers in this volume are original (fully refereed) research reports by participants of the special program on Harmonic Analysis held in the Nankai Institute of Mathematics. The main themes include: Wavelets, Singular Integral Operators, Extemal Functions, H Spaces, Harmonic Analysis on Local Domains and Lie Groups, and so on. See also :G. David "Wavelets and Singular Integrals on Curves and Surfaces", LNM 1465,1991. FROM THE CONTENTS: D.C. Chang: Nankai Lecture in -Neumann Problem.- T.P. Chen, D.Z. Zhang: Oscillary Integral with Polynomial Phase.- D.G. Deng, Y.S. Han: On a Generalized Paraproduct Defined by Non-Convolution.- Y.S. Han: H Boundedness of Calderon-Zygmund Operators for Product Domains.- Z.X. Liu, S.Z. Lu: Applications of H|rmander Multiplier Theorem to Approximation in Real Hardy Spaces.- R.L. Long, F.S. Nie: Weighted Sobolev Inequality and Eigenvalue Estimates of Schr|dinger Operator.- A. McIntosh, Q. Tao: Convolution Singular Integral Operators on Lipschitz Curves.- Z.Y. Wen, L.M.Wu, Y.P. Zhang: Set of Zeros of Harmonic Functions of Two Variables.- C.K. Yuan: On the Structures of Locally Compact Groups Admitting Inner Invariant Means.