SULJE VALIKKO

avaa valikko

Xiaochun Rong | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



High-Dimensional Data Analysis in Cancer Research
Xiaochun Li; Ronghui Xu
Springer-Verlag New York Inc. (2008)
Kovakantinen kirja
101,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
High-Dimensional Data Analysis in Cancer Research
Xiaochun Li (ed.); Ronghui Xu (ed.)
Springer (2010)
Pehmeäkantinen kirja
101,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Metric and Differential Geometry - The Jeff Cheeger Anniversary Volume
Xianzhe Dai; Xiaochun Rong
Birkhauser Verlag AG (2012)
Kovakantinen kirja
101,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Metric and Differential Geometry - The Jeff Cheeger Anniversary Volume
Xianzhe Dai; Xiaochun Rong
Birkhauser Verlag AG (2014)
Pehmeäkantinen kirja
101,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
High-Dimensional Data Analysis in Cancer Research
101,40 €
Springer-Verlag New York Inc.
Sivumäärä: 392 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2008, 12.12.2008 (lisätietoa)
Kieli: Englanti
Tuotesarja: Applied Bioinformatics and Biostatistics in Cancer Research
Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
High-Dimensional Data Analysis in Cancer Researchzoom
Näytä kaikki tuotetiedot
ISBN:
9780387697635
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste