SULJE VALIKKO

avaa valikko

Weining Yang | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Differential Privacy - From Theory to Practice
Ninghui Li; Min Lyu; Dong Su; Weining Yang
Morgan & Claypool Publishers (2016)
Pehmeäkantinen kirja
72,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Differential Privacy - From Theory to Practice
Ninghui Li; Min Lyu; Dong Su; Weining Yang
Morgan & Claypool Publishers (2016)
Kovakantinen kirja
100,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Differential Privacy : From Theory to Practice
Ninghui Li; Min Lyu; Dong Su; Weining Yang
Springer (2016)
Pehmeäkantinen kirja
66,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Differential Privacy - From Theory to Practice
72,80 €
Morgan & Claypool Publishers
Sivumäärä: 138 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2016, 26.10.2016 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Informat
Over the last decade, differential privacy (DP) has emerged as the de facto standard privacy notion for research in privacy-preserving data analysis and publishing. The DP notion offers strong privacy guarantee and has been applied to many data analysis tasks.

This Synthesis Lecture is the first of two volumes on differential privacy. This lecture differs from the existing books and surveys on differential privacy in that we take an approach balancing theory and practice. We focus on empirical accuracy performances of algorithms rather than asymptotic accuracy guarantees. At the same time, we try to explain why these algorithms have those empirical accuracy performances. We also take a balanced approach regarding the semantic meanings of differential privacy, explaining both its strong guarantees and its limitations.

We start by inspecting the definition and basic properties of DP, and the main primitives for achieving DP. Then, we give a detailed discussion on the the semantic privacy guarantee provided by DP and the caveats when applying DP. Next, we review the state of the art mechanisms for publishing histograms for low-dimensional datasets, mechanisms for conducting machine learning tasks such as classification, regression, and clustering, and mechanisms for publishing information to answer marginal queries for high-dimensional datasets. Finally, we explain the sparse vector technique, including the many errors that have been made in the literature using it.

The planned Volume 2 will cover usage of DP in other settings, including high-dimensional datasets, graph datasets, local setting, location privacy, and so on. We will also discuss various relaxations of DP.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Differential Privacy - From Theory to Practicezoom
Näytä kaikki tuotetiedot
ISBN:
9781627054935
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste