SULJE VALIKKO

avaa valikko

Wannes Meert | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Hardware-Aware Probabilistic Machine Learning Models : Learning, Inference and Use Cases
Laura Isabel Galindez Olascoaga; Wannes Meert; Marian Verhelst
Springer (2021)
Kovakantinen kirja
78,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Hardware-Aware Probabilistic Machine Learning Models : Learning, Inference and Use Cases
Laura Isabel Galindez Olascoaga; Wannes Meert; Marian Verhelst
Springer (2022)
Pehmeäkantinen kirja
59,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Efficient Execution of Irregular Dataflow Graphs - Hardware/Software Co-optimization for Probabilistic AI and Sparse Linear Alge
Nimish Shah; Wannes Meert; Marian Verhelst
Springer International Publishing AG (2023)
Kovakantinen kirja
78,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Efficient Execution of Irregular Dataflow Graphs : Hardware/Software Co-optimization for Probabilistic AI and Sparse Linear Alge
Nimish Shah; Wannes Meert; Marian Verhelst
Springer (2024)
Pehmeäkantinen kirja
59,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Hardware-Aware Probabilistic Machine Learning Models : Learning, Inference and Use Cases
78,60 €
Springer
Sivumäärä: 163 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2021, 20.05.2021 (lisätietoa)
Kieli: Englanti

This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumption and performance of the machine learning task, with the overarching goal of balancing the two optimally.



The book first motivates extreme-edge computing in the context of the Internet of Things (IoT) paradigm. Then, it briefly reviews the steps involved in the execution of a machine learning task and identifies the implications associated with implementing this type of workload in resource-constrained devices. The core of this book focuses on augmenting and exploiting the properties of Bayesian Networks and Probabilistic Circuits in order to endow them with hardware-awareness. The proposed models can encode the properties of various device sub-systems that are typically not considered by other resource-aware strategies, bringing about resource-saving opportunities that traditional approaches fail to uncover.



The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples show the potential of attaining significant resource-saving opportunities with minimal accuracy losses at application time. Overall, this book constitutes a novel approach to hardware-algorithm co-optimization that further bridges the fields of Machine Learning and Electrical Engineering.





Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Hardware-Aware Probabilistic Machine Learning Models : Learning, Inference and Use Caseszoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste