R. Bárány; W. Berblinger; F. Bering; C. Bruck; O. Bruns; G. Drehmann; P. Esch; G. Fischer; J. Forschbach; E. Frank; Hi Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (1914) Pehmeäkantinen kirja
The aim of this chapter is to discuss in detail the Monte Carlo algorithms developed to compute the sequence distributions in polymers. Because stereoregular polymers constitute a unique form of copolymer, the stereosequence distributions in vinyl homopolymers and the sequence distributions in copolymers can be computed using the same algorithms. Also included is a brief review of probabilistic models (i. e. , Bernoulli trials and Markov chains) frequently used to compute the sequence distribtuion. The determination of sequence distributions is important for the under- standing of polymer physical properties, to compute the monomer reactivity para- meters and to discriminate among polymerization mechanisms. 2. 2. Short review of analytical models, Monte Carlo algorithms and computer programs. l A Bernoullian model was developed by Price. Within this model the probability of a given state of the system is independent of the previous state and does not condition the next state. The Bernoullian behaviour has been shown 24 to describe cls-trans distributions among 1, 4 additions in polybutadienes - , 5 the comonomer distribution in ethylene-vinyl acetate copolymer , and configura- 6 tional distributions in polystyrene , poly (vinyl chloride)7, poly (vinyl alcohol)7 Consider the binary copolymerization:;1,J=1,2 (1) where - MI* , I = 1,2, is an ionic or radical polymeric chain end, and M, J = 1,2, J is a monomer. Because the final state (i. e.