SULJE VALIKKO

avaa valikko

Vyacheslav Pivovarchik | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications
Manfred Möller; Vyacheslav Pivovarchik
Birkhäuser (2015)
Kovakantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications
Manfred Möller; Vyacheslav Pivovarchik
Birkhäuser (2016)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Direct and Inverse Finite-Dimensional Spectral Problems on Graphs
Manfred Möller; Vyacheslav Pivovarchik
Birkhäuser (2020)
Kovakantinen kirja
126,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Direct and Inverse Finite-Dimensional Spectral Problems on Graphs
Manfred Möller; Vyacheslav Pivovarchik
Birkhäuser (2021)
Pehmeäkantinen kirja
126,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications
49,60 €
Birkhäuser
Sivumäärä: 412 sivua
Asu: Kovakantinen kirja
Painos: 2015
Julkaisuvuosi: 2015, 29.06.2015 (lisätietoa)
Kieli: Englanti
Tuotesarja: Operator Theory: Advances and Applications 246

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail.

Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader’s background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applicationszoom
Näytä kaikki tuotetiedot
ISBN:
9783319170695
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste