SULJE VALIKKO

avaa valikko

Veronique Van Vlasselaer | Akateeminen Kirjakauppa

FRAUD ANALYTICS USING DESCRIPTIVE, PREDICTIVE, AND SOCIAL NETWORK TECHNIQUES - A GUIDE TO DATA SCIENCE FOR FRAUD DETECTION

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques - A Guide to Data Science for Fraud Detection
Bart Baesens; Veronique Van Vlasselaer; Wouter Verbeke
John Wiley & Sons Inc (2015)
Kovakantinen kirja
41,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques - A Guide to Data Science for Fraud Detection
41,00 €
John Wiley & Sons Inc
Sivumäärä: 400 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2015, 09.10.2015 (lisätietoa)
Kieli: Englanti
Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention.

It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak.



Examine fraud patterns in historical data
Utilize labeled, unlabeled, and networked data
Detect fraud before the damage cascades
Reduce losses, increase recovery, and tighten security

The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques - A Guide to Data Science for Fraud Detectionzoom
Näytä kaikki tuotetiedot
ISBN:
9781119133124
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste