D. Jerison; G. Lustig; B. Mazur; Tomasz Mrowka; Walther Schmid; R. Stanley; Stephen Shing-Taung Yau International Press of Boston Inc (2003) Kovakantinen kirja
Barry Mazur; Wilfried Schmid; Shing-Tung Yau; David Jerison; Tomasz Mrowka; Richard Stanley; Richard P. Stanley International Press of Boston Inc (2006) Kovakantinen kirja
David Jerison; Barry Mazur; Tomasz Mrowka; Wilfried Schmid; Richard P. Stanley; Shing-Tung Yau International Press of Boston Inc (2009) Pehmeäkantinen kirja
David Jerison; Barry Mazur; Tomasz Mrowka; Wilfried Schmid; Richard P. Stanley; Shing-Tung Yau International Press of Boston Inc (2008) Kovakantinen kirja
David Jerison; Mark Kisin; Tomasz Mrowka; Richard Stanley; Horng-Tzer Yau; Shing-Tung Yau International Press of Boston Inc (2015) Pehmeäkantinen kirja
David Jerison; Barry Mazur; Tomasz Mrowka; Wilfried Schmid; Richard P. Stanley; Shing-Tung Yau International Press of Boston Inc (2008) Kovakantinen kirja
David Jerison; Barry Mazur; Tomasz Mrowka; Wilfried Schmid; Richard P. Stanley; Shing-Tung Yau International Press of Boston Inc (2011) Kovakantinen kirja
David Jerison; Mark Kisin; Tomasz Mrowka; Richard Stanley; Horng-Tzer Yau; Shing - Tung Yau International Press of Boston Inc (2013) Pehmeäkantinen kirja
David Jerison; Barry Mazur; Tomasz Mrowka; Wilfried Schmid; Richard P. Stanley; Shing-Tung Yau International Press of Boston Inc (2017) Pehmeäkantinen kirja
David Jerison; Barry Mazur; Tomasz Mrowka; Wilfried Schmid; Richard P. Stanley; Shing-Tung Yau International Press of Boston Inc (2017) Pehmeäkantinen kirja
Originating with Andreas Floer in the 1980s, Floer homology has proved to be an effective tool in tackling many important problems in three- and four-dimensional geometry and topology. This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg–Witten monopole equations. After first providing an overview of the results, the authors develop the analytic properties of the Seiberg–Witten equations, assuming only a basic grounding in differential geometry and analysis. The Floer groups of a general three-manifold are then defined and their properties studied in detail. Two final chapters are devoted to the calculation of Floer groups and to applications of the theory in topology. Suitable for beginning graduate students and researchers, this book provides a full discussion of a central part of the study of the topology of manifolds.