SULJE VALIKKO

avaa valikko

Tom M Franklin | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Recent Advances in Robot Learning - Machine Learning
Judy A. Franklin; Tom M. Mitchell; Sebastian Thrun
Springer (1996)
Kovakantinen kirja
134,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Recent Advances in Robot Learning - Machine Learning
Judy A. Franklin; Tom M. Mitchell; Sebastian Thrun
Springer-Verlag New York Inc. (2011)
Pehmeäkantinen kirja
134,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
The Pterrible Pteranodon - A Powers Beyond Their Steam Story
Tom M Franklin
Pocket Moon Press NC (2021)
Pehmeäkantinen kirja
13,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
The Pterrible Pteranodon - A Powers Beyond Their Steam Story
Tom M Franklin
Pocket Moon Press NC (2021)
Kovakantinen kirja
24,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Recent Advances in Robot Learning - Machine Learning
134,60 €
Springer
Sivumäärä: 218 sivua
Asu: Kovakantinen kirja
Painos: Reprinted from MACHI
Julkaisuvuosi: 1996, 30.06.1996 (lisätietoa)
Kieli: Englanti
Tuotesarja: The Springer International Series in Engineering and Computer Science 368
Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation.
While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems.


Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution.
Since robot learning involves decision making, there is an inherent active learning issue.
Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data.
Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints.


These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning.
On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution.
Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Recent Advances in Robot Learning - Machine Learningzoom
Näytä kaikki tuotetiedot
ISBN:
9780792397458
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste