SULJE VALIKKO

avaa valikko

Thomas Villmann | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Similarity-Based Clustering - Recent Developments and Biomedical Applications
Thomas Villmann; M. Biehl; Barbara Hammer; Michel Verleysen
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2009)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Advances in Self-Organizing Maps and Learning Vector Quantization : Proceedings of the 10th International Workshop, WSOM 2014, M
Thomas Villmann (ed.); Frank-Michael Schleif (ed.); Marika Kaden (ed.); Mandy Lange (ed.)
Springer (2014)
Pehmeäkantinen kirja
190,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and Beyond - Proceedings of the
Thomas Villmann; Marika Kaden; Tina Geweniger; Frank-Michael Schleif
Springer International Publishing AG (2024)
Pehmeäkantinen kirja
172,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Similarity-Based Clustering - Recent Developments and Biomedical Applications
49,60 €
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Sivumäärä: 203 sivua
Asu: Pehmeäkantinen kirja
Painos: 2009
Julkaisuvuosi: 2009, 02.06.2009 (lisätietoa)
Kieli: Englanti
Tuotesarja: Lecture Notes in Artificial Intelligence
Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototypes, or Hebbian learning, with a large variety of di?erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro?les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane?cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci?cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way towardimportant new directions of algorithmic design and accompanying theory.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Similarity-Based Clustering - Recent Developments and Biomedical Applicationszoom
Näytä kaikki tuotetiedot
ISBN:
9783642018046
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste