SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Thiago Christiano Silva | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Machine Learning in Complex Networks
Thiago Christiano Silva; Liang Zhao
Springer (2016)
Kovakantinen kirja
134,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning in Complex Networks
Thiago Christiano Silva; Liang Zhao
Springer International Publishing AG (2018)
Pehmeäkantinen kirja
111,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning in Complex Networks
134,60 €
Springer
Sivumäärä: 331 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2016, 11.02.2016 (lisätietoa)
Kieli: Englanti
This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in thisbook, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning in Complex Networkszoom
Näytä kaikki tuotetiedot
ISBN:
9783319172897
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste