Shipeng Li; Abdulmotaleb El Saddik; Meng Wang; Tao Mei; Nicu Sebe; Shuicheng Yan; Richang Hong; Cathal Gurrin Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2013) Pehmeäkantinen kirja
Shipeng Li; Abdulmotaleb El Saddik; Meng Wang; Tao Mei; Nicu Sebe; Shuicheng Yan; Richang Hong; Cathal Gurrin Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2013) Pehmeäkantinen kirja
Alberto Del Bimbo; Rita Cucchiara; Stan Sclaroff; Giovanni Maria Farinella; Tao Mei; Marco Bertini; Hugo Jair Escalante Springer Nature Switzerland AG (2021) Pehmeäkantinen kirja
Alberto Del Bimbo; Rita Cucchiara; Stan Sclaroff; Giovanni Maria Farinella; Tao Mei; Marco Bertini; Hugo Jair Escalante Springer Nature Switzerland AG (2021) Pehmeäkantinen kirja
Alberto Del Bimbo; Rita Cucchiara; Stan Sclaroff; Giovanni Maria Farinella; Tao Mei; Marco Bertini; Hugo Jair Escalante Springer Nature Switzerland AG (2021) Pehmeäkantinen kirja
Alberto Del Bimbo; Rita Cucchiara; Stan Sclaroff; Giovanni Maria Farinella; Tao Mei; Marco Bertini; Hugo Jair Escalante Springer Nature Switzerland AG (2021) Pehmeäkantinen kirja
Alberto Del Bimbo (ed.); Rita Cucchiara (ed.); Stan Sclaroff (ed.); Giovanni Maria Farinella (ed.); Tao Mei (ed.); Bertini Springer (2021) Pehmeäkantinen kirja
Alberto Del Bimbo (ed.); Rita Cucchiara (ed.); Stan Sclaroff (ed.); Giovanni Maria Farinella (ed.); Tao Mei (ed.); Bertini Springer (2021) Pehmeäkantinen kirja
Alberto Del Bimbo (ed.); Rita Cucchiara (ed.); Stan Sclaroff (ed.); Giovanni Maria Farinella (ed.); Tao Mei (ed.); Bertini Springer (2021) Pehmeäkantinen kirja
Alberto Del Bimbo; Rita Cucchiara; Stan Sclaroff; Giovanni Maria Farinella; Tao Mei; Marco Bertini; Hugo Jair Escalante Springer Nature Switzerland AG (2021) Pehmeäkantinen kirja
The author gives a systematic study of the Hardy spaces of functions with values in the noncommutative $Lp$-spaces associated with a semifinite von Neumann algebra $mathcal{M .$ This is motivated by matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), as well as by the recent development of noncommutative martingale inequalities. In this paper noncommutative Hardy spaces are defined by noncommutative Lusin integral function, and it is proved that they are equivalent to those defined by noncommutative Littlewood-Paley G-functions. The main results of this paper include: (i) The analogue in the author's setting of the classical Fefferman duality theorem between $mathcal{H 1$ and $mathrm{BMO $. (ii) The atomic decomposition of the author's noncommutative $mathcal{H 1.$ (iii) The equivalence between the norms of the noncommutative Hardy spaces and of the noncommutative $Lp$-spaces $(1 infty )$. (iv) The noncommutative Hardy-Littlewood maximal inequality. (v) A description of BMO as an intersection of two dyadic BMO. (vi) The interpolation results on these Hardy spaces.