SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Suvrit Sra | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Optimization for Machine Learning
Suvrit Sra; Sebastian Nowozin; Stephen J. Wright
MIT Press Ltd (2011)
Kovakantinen kirja
67,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Optimization for Machine Learning
Suvrit Sra; Sebastian Nowozin; Stephen J. Wright
MIT Press Ltd (2011)
Pehmeäkantinen kirja
12,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Optimization for Machine Learning
67,40 €
MIT Press Ltd
Sivumäärä: 512 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2011, 30.09.2011 (lisätietoa)
An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities.

The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields.
Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Contributions by: Suvrit Sra, Sebastian Nowozin, Stephen J. Wright, Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Optimization for Machine Learning
Näytä kaikki tuotetiedot
ISBN:
9780262016469
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste