SULJE VALIKKO

avaa valikko

Sunku Ranganath | Akateeminen Kirjakauppa

MODEL OPTIMIZATION METHODS FOR EFFICIENT AND EDGE AI - FEDERATED LEARNING ARCHITECTURES, FRAMEWORKS AND APPLICATIONS

Model Optimization Methods for Efficient and Edge AI - Federated Learning Architectures, Frameworks and Applications
Pethuru Raj Chelliah; Amir Masoud Rahmani; Robert Colby; Gayathri Nagasubramanian; Sunku Ranganath
John Wiley & Sons Inc (2025)
Kovakantinen kirja
137,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Model Optimization Methods for Efficient and Edge AI - Federated Learning Architectures, Frameworks and Applications
137,10 €
John Wiley & Sons Inc
Sivumäärä: 432 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2025, 27.01.2025 (lisätietoa)
Kieli: Englanti
Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications

Model Optimization Methods for Efficient and Edge AI explores AI model engineering, evaluation, refinement, optimization, and deployment across multiple cloud environments (public, private, edge, and hybrid). It presents key applications of the AI paradigm, including computer vision (CV) and Natural Language Processing (NLP), explaining the nitty-gritty of federated learning (FL) and how the FL method is helping to fulfill AI model optimization needs. The book also describes tools that vendors have created, including FL frameworks and platforms such as PySyft, Tensor Flow Federated (TFF), FATE (Federated AI Technology Enabler), Tensor/IO, and more.

The first part of the text covers popular AI and ML methods, platforms, and applications, describing leading AI frameworks and libraries in order to clearly articulate how these tools can help with visualizing and implementing highly flexible AI models quickly. The second part focuses on federated learning, discussing its basic concepts, applications, platforms, and its potential in edge systems (such as IoT).

Other topics covered include:



Building AI models that are destined to solve several problems, with a focus on widely articulated classification, regression, association, clustering, and other prediction problems
Generating actionable insights through a variety of AI algorithms, platforms, parallel processing, and other enablers
Compressing AI models so that computational, memory, storage, and network requirements can be substantially reduced
Addressing crucial issues such as data confidentiality, data access rights, data protection, and access to heterogeneous data
Overcoming cyberattacks on mission-critical software systems by leveraging federated learning

Written in an accessible manner and containing a helpful mix of both theoretical concepts and practical applications, Model Optimization Methods for Efficient and Edge AI is an essential reference on the subject for graduate and postgraduate students, researchers, IT professionals, and business leaders.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tulossa! Tuote ilmestyy 27.01.2025. Voit tehdä tilauksen heti ja toimitamme tuotteen kun saamme sen varastoomme. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Model Optimization Methods for Efficient and Edge AI - Federated Learning Architectures, Frameworks and Applicationszoom
Näytä kaikki tuotetiedot
ISBN:
9781394219216
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste