SULJE VALIKKO

avaa valikko

Sun Jimeng Sun | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Introduction to Deep Learning for Healthcare
Cao Xiao; Jimeng Sun
Springer (2021)
Kovakantinen kirja
59,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Introduction to Deep Learning for Healthcare
Cao Xiao; Jimeng Sun
Springer (2022)
Pehmeäkantinen kirja
59,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Introduction to Deep Learning for Healthcare
Xiao Cao Xiao; Sun Jimeng Sun
Springer Nature B.V. (2021)
Pehmeäkantinen kirja
115,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Introduction to Deep Learning for Healthcare
59,30 €
Springer
Sivumäärä: 232 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2021, 12.11.2021 (lisätietoa)
Kieli: Englanti

This textbook presents deep learning models and their healthcare applications. It focuses on rich health data and deep learning models that can effectively model health data. Healthcare data: Among all healthcare technologies, electronic health records (EHRs) had vast adoption and a significant impact on healthcare delivery in recent years. One crucial benefit of EHRs is to capture all the patient encounters with rich multi-modality data. Healthcare data include both structured and unstructured information. Structured data include various medical codes for diagnoses and procedures, lab results, and medication information. Unstructured data contain 1) clinical notes as text, 2) medical imaging data such as X-rays, echocardiogram, and magnetic resonance imaging (MRI), and 3) time-series data such as the electrocardiogram (ECG) and electroencephalogram (EEG). Beyond the data collected during clinical visits, patient self-generated/reported data start to grow thanks to wearable sensors’increasing use.  The authors  present deep learning case studies on all data described.

Deep learning models: Neural network models are a class of machine learning methods with a long history. Deep learning models are neural networks of many layers, which can extract multiple levels of features from raw data. Deep learning applied to healthcare is a natural and promising direction with many initial successes. The authors cover deep neural networks, convolutional neural networks, recurrent neural networks, embedding methods, autoencoders, attention models, graph neural networks, memory networks, and generative models. It’s presented with concrete healthcare case studies such as clinical predictive modeling, readmission prediction, phenotyping, x-ray classification, ECG diagnosis, sleep monitoring, automatic diagnosis coding from clinical notes, automatic deidentification, medication recommendation, drug discovery (drug property prediction and molecule generation), and clinical trial matching.

This textbook targets graduate-level students focused on deep learning methods and their healthcare applications. It can be used for the concepts of deep learning and its applications as well. Researchers working in this field will also find this book to be extremely useful and valuable for their research.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Introduction to Deep Learning for Healthcarezoom
Näytä kaikki tuotetiedot
ISBN:
9783030821838
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste