SULJE VALIKKO

avaa valikko

Suman Swarnkar | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Multimedia Data Processing and Computing
Suman Swarnkar; J P Patra; Tien Anh Tran; Bharat Bhushan; Santosh Biswas
Taylor & Francis Ltd (2023)
Kovakantinen kirja
125,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Supervised and Unsupervised Data Engineering for Multimedia Data
Suman Kumar Swarnkar; J. P. Patra; Sapna Singh Kshatri; Yogesh Kumar Rathore; Tien Anh Tran
John Wiley & Sons Inc (2024)
Kovakantinen kirja
177,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning in Multimedia - Unlocking the Power of Visual and Auditory Intelligence
Suman Kumar Swarnkar; Annu Sharma; J. Somasekar; Bharat Bhushan
Taylor & Francis Ltd (2024)
Kovakantinen kirja
106,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Smart Agriculture - Harnessing Machine Learning for Crop Management
Amol Dattatray Dhaygude; Suman Kumar Swarnkar; Priya Chugh; Yogesh Kumar Rathore
Taylor & Francis Ltd (2024)
Kovakantinen kirja
106,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Artificial Intelligence Revolutionizing Cancer Care - Precision Diagnosis and Patient-Centric Healthcare
Suman Kumar Swarnkar; Abhishek Guru; Gurpreet Singh Chhabra; Harshitha Raghavan Devarajan
Taylor & Francis Ltd (2025)
Kovakantinen kirja
163,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Multimedia Data Processing and Computing
125,90 €
Taylor & Francis Ltd
Sivumäärä: 176 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2023, 28.11.2023 (lisätietoa)
Kieli: Englanti
This book focuses on different applications of multimedia with supervised and unsupervised data engineering in the modern world. It includes AI-based soft computing and machine techniques in the field of medical diagnosis, biometrics, networking, manufacturing, data science, automation in electronics industries, and many more relevant fields.

Multimedia Data Processing and Computing provides a complete introduction to machine learning concepts, as well as practical guidance on how to use machine learning tools and techniques in real-world data engineering situations. It is divided into three sections. In this book on multimedia data engineering and machine learning, the reader will learn how to prepare inputs, interpret outputs, appraise discoveries, and employ algorithmic strategies that are at the heart of successful data mining. The chapters focus on the use of various machine learning algorithms, neural net- work algorithms, evolutionary techniques, fuzzy logic techniques, and deep learning techniques through projects, so that the reader can easily understand not only the concept of different algorithms but also the real-world implementation of the algorithms using IoT devices. The authors bring together concepts, ideas, paradigms, tools, methodologies, and strategies that span both supervised and unsupervised engineering, with a particular emphasis on multimedia data engineering. The authors also emphasize the need for developing a foundation of machine learning expertise in order to deal with a variety of real-world case studies in a variety of sectors such as biological communication systems, healthcare, security, finance, and economics, among others. Finally, the book also presents real-world case studies from machine learning ecosystems to demonstrate the necessary machine learning skills to become a successful practitioner.

The primary users for the book include undergraduate and postgraduate students, researchers, academicians, specialists, and practitioners in computer science and engineering.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Multimedia Data Processing and Computingzoom
Näytä kaikki tuotetiedot
ISBN:
9781032469317
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste