SULJE VALIKKO

avaa valikko

Sucharita Ghosh | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 6 tuotetta
Haluatko tarkentaa hakukriteerejä?



Kernel Smoothing - Principles, Methods and Applications
Sucharita Ghosh
John Wiley & Sons Inc (2017)
Kovakantinen kirja
78,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Modern Approaches in Vegetation Monitoring
E. Feldmeyer-Christe; Sucharita Ghosh; O. Wildi
Akademiai Kiado (2004)
Kovakantinen kirja
122,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
A Changing World - Challenges for Landscape Research
Felix Kienast; Otto Wildi; Sucharita Ghosh
Springer (2009)
Pehmeäkantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
A Changing World - Challenges for Landscape Research
Felix Kienast; Otto Wildi; Sucharita Ghosh
Springer-Verlag New York Inc. (2007)
Kovakantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Long-Memory Processes - Probabilistic Properties and Statistical Methods
Jan Beran; Yuanhua Feng; Sucharita Ghosh; Rafal Kulik
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2013)
Kovakantinen kirja
172,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Long-Memory Processes - Probabilistic Properties and Statistical Methods
Jan Beran; Yuanhua Feng; Sucharita Ghosh; Rafal Kulik
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2016)
Pehmeäkantinen kirja
172,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Kernel Smoothing - Principles, Methods and Applications
78,60 €
John Wiley & Sons Inc
Sivumäärä: 272 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2017, 29.12.2017 (lisätietoa)
Kieli: Englanti
Comprehensive theoretical overview of kernel smoothing methods with motivating examples

Kernel smoothing is a flexible nonparametric curve estimation method that is applicable when parametric descriptions of the data are not sufficiently adequate. This book explores theory and methods of kernel smoothing in a variety of contexts, considering independent and correlated data e.g. with short-memory and long-memory correlations, as well as non-Gaussian data that are transformations of latent Gaussian processes. These types of data occur in many fields of research, e.g. the natural and the environmental sciences, and others. Nonparametric density estimation, nonparametric and semiparametric regression, trend and surface estimation in particular for time series and spatial data and other topics such as rapid change points, robustness etc. are introduced alongside a study of their theoretical properties and optimality issues, such as consistency and bandwidth selection.

Addressing a variety of topics, Kernel Smoothing: Principles, Methods and Applications offers a user-friendly presentation of the mathematical content so that the reader can directly implement the formulas using any appropriate software. The overall aim of the book is to describe the methods and their theoretical backgrounds, while maintaining an analytically simple approach and including motivating examples—making it extremely useful in many sciences such as geophysics, climate research, forestry, ecology, and other natural and life sciences, as well as in finance, sociology, and engineering.



A simple and analytical description of kernel smoothing methods in various contexts
Presents the basics as well as new developments
Includes simulated and real data examples

Kernel Smoothing: Principles, Methods and Applications is a textbook for senior undergraduate and graduate students in statistics, as well as a reference book for applied statisticians and advanced researchers. 

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Kernel Smoothing - Principles, Methods and Applicationszoom
Näytä kaikki tuotetiedot
ISBN:
9781118456057
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste