SULJE VALIKKO

avaa valikko

Stephen W. Raudenbush | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Hierarchical Linear Models - Applications and Data Analysis Methods
Stephen W. Raudenbush; Anthony S. Bryk
SAGE Publications Inc (2002)
Kovakantinen kirja
131,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
The Ambitious Elementary School - Its Conception, Design, and Implications for Educational Equality
Elizabeth McGhee Hassrick; Stephen W. Raudenbush; Lisa Rosen
The University of Chicago Press (2017)
Pehmeäkantinen kirja
34,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
The Ambitious Elementary School - Its Conception, Design, and Implications for Educational Equality
Elizabeth McGhee Hassrick; Stephen W. Raudenbush; Lisa Rosen
The University of Chicago Press (2017)
Kovakantinen kirja
110,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Hierarchical Linear Models - Applications and Data Analysis Methods
131,20 €
SAGE Publications Inc
Sivumäärä: 512 sivua
Asu: Kovakantinen kirja
Painos: 2nd Revised edition
Julkaisuvuosi: 2002, 31.01.2002 (lisätietoa)
Kieli: Englanti
"This is a first-class book dealing with one of the most important areas of current research in applied statistics…the methods described are widely applicable…the standard of exposition is extremely high."
--Short Book Reviews from the International Statistical Institute

"The new chapters (10-14) improve an already excellent resource for research and instruction. Their content expands the coverage of the book to include models for discrete level-1 outcomes, non-nested level-2 units, incomplete data, and measurement error---all vital topics in contemporary social statistics. In the tradition of the first edition, they are clearly written and make good use of interesting substantive examples to illustrate the methods. Advanced graduate students and social researchers will find the expanded edition immediately useful and pertinent to their research."
--TED GERBER, Sociology, University of Arizona

"Chapter 11 was also exciting reading and shows the versatility of the mixed model with the EM algorithm. There was a new revelation on practically every page. I found the exposition to be extremely clear. It was like being led from one treasure room to another, and all of the gems are inherently useful. These are problems that researchers face everyday, and this chapter gives us an excellent alternative to how we have traditionally handled these problems."
--PAUL SWANK, Houston School of Nursing, University of Texas, Houston

Popular in the First Edition for its rich, illustrative examples and lucid explanations of the theory and use of hierarchical linear models (HLM), the book has been reorganized into four parts with four completely new chapters. The first two parts, Part I on "The Logic of Hierarchical Linear Modeling" and Part II on "Basic Applications" closely parallel the first nine chapters of the previous edition with significant expansions and technical clarifications, such as:

* An intuitive introductory summary of the basic procedures for estimation and inference used with HLM models that only requires a minimal level of mathematical sophistication in Chapter 3
* New section on multivariate growth models in Chapter 6
* A discussion of research synthesis or meta-analysis applications in Chapter 7
* Data analytic advice on centering of level-1 predictors and new material on plausible value intervals and robust standard estimators

While the first edition confined its attention to continuously distributed outcomes at level 1, this second edition now includes coverage of an array of outcomes types in Part III:

* New Chapter 10 considers applications of hierarchical models in the case of binary outcomes, counted data, ordered categories, and multinomial outcomes using detailed examples to illustrate each case
* New Chapter 11 on latent variable models, including estimating regressions from missing data, estimating regressions when predictors are measured with error, and embedding item response models within the framework of the HLM model
* New introduction to the logic of Bayesian inference with applications to hierarchical data (Chapter 13)

The authors conclude in Part IV with the statistical theory and computations used throughout the book, including univariate models with normal level-1 errors, multivariate linear models, and hierarchical generalized linear models.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Hierarchical Linear Models - Applications and Data Analysis Methodszoom
Näytä kaikki tuotetiedot
ISBN:
9780761919049
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste