SULJE VALIKKO

avaa valikko

Shrusti Ghela | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
B.K. Tripathy; Anveshrithaa Sundareswaran; Shrusti Ghela
Taylor & Francis Ltd (2021)
Kovakantinen kirja
192,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
B.K. Tripathy; Anveshrithaa Sundareswaran; Shrusti Ghela
Taylor & Francis Ltd (2023)
Pehmeäkantinen kirja
88,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
192,70 €
Taylor & Francis Ltd
Sivumäärä: 160 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2021, 02.09.2021 (lisätietoa)
Kieli: Englanti
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization describes such algorithms as Locally Linear Embedding (LLE), Laplacian Eigenmaps, Isomap, Semidefinite Embedding, and t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed, including strengths and limitations. The book highlights important use cases of these algorithms and provides examples along with visualizations. Comparative study of the algorithms is presented to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization.

FEATURES






Demonstrates how unsupervised learning approaches can be used for dimensionality reduction



Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts



Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use



Provides use cases, illustrative examples, and visualizations of each algorithm



Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis

This book is aimed at professionals, graduate students, and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualizationzoom
Näytä kaikki tuotetiedot
ISBN:
9781032041018
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste