SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Sergey Nikolenko | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Synthetic Data for Deep Learning
Sergey I. Nikolenko
Springer (2021)
Kovakantinen kirja
134,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Synthetic Data for Deep Learning
Sergey I. Nikolenko
Springer (2022)
Pehmeäkantinen kirja
134,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Synthetic Data for Deep Learning
Nikolenko Sergey I. Nikolenko
Springer Nature B.V. (2021)
Pehmeäkantinen kirja
118,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Analysis of Images, Social Networks and Texts : 5th International Conference, AIST 2016, Yekaterinburg, Russia, April 7-9, 2016,
Dmitry I. Ignatov (ed.); Mikhail Yu. Khachay (ed.); Valeri G. Labunets (ed.); Natalia Loukachevitch (ed.); Sergey Nikolenko
Springer (2017)
Pehmeäkantinen kirja
51,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Synthetic Data for Deep Learning
134,60 €
Springer
Sivumäärä: 348 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2021, 27.06.2021 (lisätietoa)
Kieli: Englanti
Tuotesarja: Springer Optimization and Its Applications 174

This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field.  

In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs.

The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Synthetic Data for Deep Learningzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste