SULJE VALIKKO

avaa valikko

Sebastian Kurtek | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Elastic Shape Analysis of Three-Dimensional Objects
Ian H. Jermyn; Sebastian Kurtek; Hamid Laga; Anuj Srivastava
Morgan & Claypool Publishers (2017)
Pehmeäkantinen kirja
106,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Elastic Shape Analysis of Three-Dimensional Objects
Ian H. Jermyn; Sebastian Kurtek; Hamid Laga; Anuj Srivastava
Springer (2017)
Pehmeäkantinen kirja
51,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Elastic Shape Analysis of Three-Dimensional Objects
106,50 €
Morgan & Claypool Publishers
Sivumäärä: 185 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2017, 15.09.2017 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Computer
Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations.

We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in , including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this framework is that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations.

The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L(2) metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities.

These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis.

This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters.

Series edited by: Gerard Medioni, Sven Dickinson

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Elastic Shape Analysis of Three-Dimensional Objectszoom
Näytä kaikki tuotetiedot
ISBN:
9781681730271
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste