SULJE VALIKKO

avaa valikko

Saeed Soltani-Mohammadi | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Estimating Ore Grade Using Evolutionary Machine Learning Models
Mohammad Ehteram; Zohreh Sheikh Khozani; Saeed Soltani-Mohammadi; Maliheh Abbaszadeh
Springer Verlag, Singapore (2022)
Kovakantinen kirja
121,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Estimating Ore Grade Using Evolutionary Machine Learning Models
Mohammad Ehteram; Zohreh Sheikh Khozani; Saeed Soltani-Mohammadi; Maliheh Abbaszadeh
Springer Verlag, Singapore (2023)
Pehmeäkantinen kirja
121,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Estimating Ore Grade Using Evolutionary Machine Learning Models
121,30 €
Springer Verlag, Singapore
Sivumäärä: 101 sivua
Asu: Kovakantinen kirja
Painos: 1st ed. 2023
Julkaisuvuosi: 2022, 27.12.2022 (lisätietoa)
Kieli: Englanti
This book examines the abilities of new machine learning models for predicting ore grade in mining engineering. A variety of case studies are examined in this book. A motivation for preparing this book was the absence of robust models for estimating ore grade. Models of current books can also be used for the different sciences because they have high capabilities for estimating different variables. Mining engineers can use the book to determine the ore grade accurately. This book helps identify mineral-rich regions for exploration and exploitation. Exploration costs can be decreased by using the models in the current book. In this book, the author discusses the new concepts in mining engineering, such as uncertainty in ore grade modeling. Ensemble models are presented in this book to estimate ore grade. In the book, readers learn how to construct advanced machine learning models for estimating ore grade. The authors of this book present advanced and hybrid models used to estimate oregrade instead of the classic methods such as kriging. The current book can be used as a comprehensive handbook for estimating ore grades. Industrial managers and modelers can use the models of the current books. Each level of ore grade modeling is explained in the book. In this book, advanced optimizers are presented to train machine learning models. Therefore, the book can also be used by modelers in other fields. The main motivation of this book is to address previous shortcomings in the modeling process of ore grades. The scope of this book includes mining engineering, soft computing models, and artificial intelligence.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Estimating Ore Grade Using Evolutionary Machine Learning Modelszoom
Näytä kaikki tuotetiedot
ISBN:
9789811981050
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste